Напоминание

Треугольники


Автор: Шехинаева Светлана Агубекировна
Должность: учитель математики
Учебное заведение: МБОУ СОШ №38 (многопрофильная) им. В.М. Дегоева
Населённый пункт: город Владикавказ, РСО-Алания
Наименование материала: презентация
Тема: Треугольники
Раздел: среднее образование





Назад




О, сколько нам открытий чудных

О, сколько нам открытий чудных

Готовит просвещенья дух.

Готовит просвещенья дух.

И опыт – сын ошибок трудных,

И опыт – сын ошибок трудных,

И гений – парадоксов друг.

И гений – парадоксов друг.

А.С.Пушкин

А.С.Пушкин

быть внимательным и сообразительным;

быть внимательным и сообразительным;

не оставлять ни одного вопроса без ответа;

не оставлять ни одного вопроса без ответа;

на каждое задание затрачивать минимум

на каждое задание затрачивать минимум

времени, но максимум усердия;

времени, но максимум усердия;

не подглядывать, не подслушивать, не

не подглядывать, не подслушивать, не

«проникать» в мысли соседа

«проникать» в мысли соседа

Соотнесите высказывание с его названием

1.

Треугольник называется равнобедренным, если две

его стороны равны

2.

Если две стороны и угол между ними равны

соответственно двум сторонам и углу между ними

другого треугольника, то такие треугольники равны.

3.

Треугольником называется фигура, которая состоит

из трех точек, не лежащих на одной прямой, и трех

отрезков, попарно соединяющих эти точки.

4.

Каков бы ни был треугольник, существует равный

ему треугольник в заданном расположении

относительно данной полупрямой.

5.

В равнобедренном треугольнике углы при основании

равны.

6.

Если три стороны одного треугольника равны

соответственно трем сторонам другого треугольника,

то такие треугольники равны.

7.

В равнобедренном треугольнике медиана,

проведенная к основанию, является биссектрисой и

высотой.

8.

Сумма углов треугольника равна 180°.

9.

Внешний угол треугольника Равен сумме двух

внутренних углов, не смежных с ним.

10. Биссектрисой треугольника, проведенной из данной

вершины, называется отрезок биссектрисы угла

треугольника, соединяющий эту вершину с точкой на

противолежащей стороне.

а) Определение треугольника;

б) Определение равнобедренного

треугольника;

в) Свойство углов

равнобедренного треугольника;

г) Аксиома существования

треугольника равного данному;

д) Первый признак равенства

треугольников;

е) Свойство углов треугольника;

ж) Свойство медианы

равнобедренного треугольника;

з) Третий признак равенства

треугольников;

и) Определение биссектрисы

треугольника;

к) Свойство внешнего угла

треугольника.

Заполни пропуски

1. Сумма углов треугольника равна ____ .

2. Два треугольника называются равными, если ____ .

3. Треугольник ABC – равнобедренный, AB и BC – боковые

стороны. У него равны углы ____ .

4. Треугольник называется равнобедренным, если ____ .

5. Если в треугольнике два угла равны, то он ____.

6. Внешним углом треугольника называется ____ .

7. В равнобедренном треугольнике медиана, проведенная к

основанию, является ____ .

8. Если в треугольнике три угла равны, то он ____ .

9. Если две стороны и ____ одного треугольника равны

соответственно двум сторонам и ____ другого

треугольника, то _____ .

10.Треугольник называется прямоугольным, если _____ .

Найдите ошибки в тексте

Некий ученик написал сочинение по теме «Треугольники». Вот

некоторые фрагменты его сочинения:

Треугольник – это геометрическая фигура, состоящая из трех

точек, соединенных попарно отрезками.

Среди треугольников особенно выделяется равнобедренный

треугольник. Если в нем провести любую биссектрису, то она

будет и медианой, и высотой.

Чтобы доказать равенство треугольников, надо знать признаки

равенства треугольников. Если три угла одного треугольника равны

соответственно трем углам другого треугольника, то такие

треугольники равны.

Если сторона и любые два угла одного треугольника равны

соответственно стороне и любым двум угла другого треугольника,

то такие треугольники равны.

Если две стороны и любой угол одного треугольника равны

соответственно двум сторонам и любому углу другого

треугольника, то такие треугольники равны.

Внешний угол треугольника больше внутреннего угла, смежного с

ним.

Найди лишнее слово :

Найди лишнее слово :

сторона, вершина, диаметр, основание,

сторона, вершина, диаметр, основание,

угол

угол

Найди неизвестное число:

Найди неизвестное число:

Охарактеризуйте треугольник

Охарактеризуйте треугольник

ABC

ABC

и найдите неизвестный угол?

и найдите неизвестный угол?

Геометрия - 9

Геометрия - 9

Треугольник -

Треугольник -

C

A

?

B

M

K

Устная самостоятельная работа

1)

C

D

E

F

M

Доказать:

∆ MEF = ∆ DEC

Устная самостоятельная работа

2)

C

D

A

B

Доказать:

∆ ADC = ∆ ABC

Устная самостоятельная работа

3)

A

B

C

D

Доказать:

∆ ABC = ∆ ADC

Устная самостоятельная работа

4)

D

F

R

B

3

1

2

4

Доказать:

DF = BR

Устная самостоятельная работа

5)

Q

A

F

R

Доказать:

А = R

Устная самостоятельная работа

6)

A

K

F

D

C

B

4 см

0,4 дм

Доказать:

AK = FD

Устная самостоятельная работа

7)

A

B

C

D

F

O

Доказать:

AD = BF

Устная самостоятельная работа

8)

A

C

B

K

60°

60°

30°

2 см

Найти: KB

Устная самостоятельная работа

9)

C

B

A

D

35°

Найти:

A, ABD

Устная самостоятельная работа

10)

A

B

C

D

2 см

3 см

Найти:

P

∆ABD

Устная самостоятельная работа

11)

A

D

C

B

F

45°

Найти:

FBC

Устная самостоятельная работа

12)

A

C

B

D

F

55°

Найти:

AFD

Устная самостоятельная работа

13)

A

B

C

O

F

D

Найти:

COD

14)

Устная самостоятельная работа

A

F

E

B

D

C

30°

Найти:

BFD

Устная самостоятельная работа

15)

A

Q

F

B

C

D

M

K

Доказать:

AM = DK

Синквейн

Короткое литературное произведение,

характеризующее предмет (тему), состоящее из

пяти строк, которое пишется по определенному

плану.

Точка

Невесомая, неширокая

Лежит, находится, ограничивает

Еле заметна для меня

Крапинка.

В

М

A

С

D

Е

F

N

K

S

R

T

120

0

1)Дано:

АВС; МВС –внешний угол

АВ = ВС; МВС = 120

0

Найти: А

2) Дано: ∆ DEF; N

DF

DN = NF; EN = ½DF

D = A

Найти: F

3) Дано: ∆KRT, SR = RT

KS = ST, K = F

Найти: RTK

Геометрия является самым

могущественным средством

для изощрения наших

умственных способностей и

дает нам возможность

правильно мыслить и

рассуждать.

Галилео Галилей



В раздел образования